Mis on trigonomeetria teada juba 3000 aastat tagasi

Teie, kes praegu käite 10. klassis, tunnete kindlasti trigonomeetria ainet? See on matemaatika haru, mis nõuab kolmnurkade nurkadega tegelemist ning nn sinuste, koosinuside ja puutujate tundmaõppimist.

Rääkides selle päritolust, tekkis trigonomeetria hellenistlikul perioodil 3. sajandil eKr alates geomeetria kasutamisest astronoomia uurimisel. Sellegipoolest võib selle olemasolu ise leida Vana-Egiptuse ja Babüloni ning Induse oru tsivilisatsiooni aegadest, umbes 3000 aastat tagasi.

Selle aja jooksul said paljud asjad tänu trigonomeetriale lahenduse. Alustades sealse kauge tähe kauguse teadmisest, kalju kõrguse nurga mõõtmisest ilma, et peaksite seda üles ronima, kuni jõe laiuse mõõtmiseni, ilma et peaksite seda ületama.

Lisaks astronoomiale on trigonomeetriat kasutavad muud valdkonnad muusikateooria, akustika, optika, finantsturu analüüs, elektroonika, tõenäosusteooria, statistika, bioloogia, keemia, erinevad füüsika harud, maamõõtmine ja geodeesia, arhitektuur, foneetika, majandus ja palju rohkem.

Raske? Jah ja ei. Kuid see ei tähenda, et seda ei saaks õppida.

Selle õppetunni valdamiseks on esimene asi, mida õppida kolmnurkade, eriti täisnurkse kolmnurga põhimõiste. Põhimõtteliselt koosneb kolmnurk alati kolmest küljest, nimelt hüpotenuus, külg ja esikülg. Lisaks kolm nurka, nimelt perpendikulaarne nurk, eesmine nurk ja külgmine nurk.  

Kontseptsioon on lihtne, kui üks nurk on 90 kraadi ja teine ​​on teada, siis võib leida kolmanda nurga, sest kolmnurga kolm nurka moodustavad kokku 180 kraadi. Seetõttu moodustavad kaks nurka (mis on alla 90 kraadi) kokku kuni 90 kraadi: täiendav nurk.

Trigonomeetria on sünonüüm ka trigonomeetrilistele funktsioonidele, mis hõlmavad siinust (sin), koosinust (cos), tangenti (tan), mis kõik on viisid kolmnurga külje ja kolmnurga kahest küljest moodustatud nurga määramiseks.

Siinus (patt) on matemaatikas nurga ees oleva kolmnurga külje ja hüpotenuusi suhe - eeldusel, et see on täisnurkne kolmnurk või üks selle 90 kraadist.

Kosinus (cos) matemaatikas on nurgal asuva kolmnurga külgede ja hüpotenuusi suhe - eeldusel, et kolmnurk on täisnurkne või üks selle 90 kraadist.

Tangent (tan) on matemaatikas nurga ees oleva kolmnurga külje ja nurga kolmnurga külje suhe - tingimusel, et see on täisnurkne kolmnurk või üks selle 90 kraadist.

Trigonomeetrilised funktsioonivalemid

Trigonomeetriline identiteet

Trigonomeetriline identiteet on seos või avatud lause, mis sisaldab trigonomeetrilisi funktsioone ja mis kehtib iga muutuja asendamise korral tema funktsioonidomeeni konstantse liikmega. Suhte tõde või avatud lause on identiteet, mida tuleb tõestada.

Selleks saab teha mitmeid viise, millest üks on valemite või tõestatud identiteetide kasutamine.

Lisateabe saamiseks on siin mõned trigonomeetrilised valemid, mida sageli kohtame:

Nurkade arvu ja erinevuse valem

Trigonomeetrilised summa ja erinevuse valemid

Trigonomeetrilised korrutamisvalemid